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Abstract

Formulae for heat and mass exchange from the surface of ice particles of different forms are derived. Destruction
of plate, cylindrical and spherical particles in the sublimation regime, as well as the subsequent melting (cylinder,
disk) and evaporation of the water droplet formed are investigated. The study was conducted for the parameters
averaged over the particle volume: heat release intensity, temperature, evaporation efficiency, etc. Heating time,
melting time, evaporation time, evaporation efficiency, temperature for particles in the form of thin long cylinder is
presented versus the intensity of laser radiation at various temperatures and pressures of the surrounding air. The
results are compared with the correspondent evaporation parameters of a supercooled spherical water

droplet. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

When we investigate clearing of a water aerosol
(mist, clouds, aircraft condensation trail) by the laser
radiation including the solid phase, a study of inter-
action between radiation and a single particle is a
necessary stage. Usually three groups of particles are
distinguished: plates, cylinders, spheres [1-3]. The
question of temperature and other conditions of aero-
sol particles freezing is not completely cleared. There is
evidence for existence of supercooled droplets at a tem-
perature of —40°C (233 K) [4,5]. If some acid (nitric,
sulphuric, etc.) is present in droplets, the liquid phase
can exist at a temperature over 200 K [6]. Evaporation
of a spherical water droplet is well investigated [7-9].
Evaporation of ice crystals is not practically investi-
gated. Some experimental and theoretical data on the
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evaporation of ice plates are presented in [10—-13]. In
the present work, sublimation and evaporation of ice
aerosol particles in the form of long thin cylinder is
investigated. The results are compared with the evap-
oration characteristics of plate ice disk and super-
cooled spherical water droplet.

2. Mass and heat fluxes from the particle surface

Let us derive general formulae for heat and mass
exchange with the surrounding air. We shall consider
an ice aerosol particle having the form of a flat disk of
radius L > a (where a = h/2, is half-thickness of the
disk), a cylinder of radius a¢ and length L <« a or a
sphere of radius a. The mass and energy conservation
equations, the equation of vapor diffusion through air,
the air and vapor state equations have the following
form [14]:
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Nomenclature

a small size of particle (half-thickness of plate
and radius of cylinder)

b evaporation efficiency

C, specific heat at constant pressure

D  diffusion coefficient

H the specific heat of water evaporation Hy, or
ice sublimation H;

I  radiation intensity

j density of the vapor mass flow

jr  density of energy flow

L Dbig size of particle (radius of disk and length
of cylinder)

p  pressure

q  heat release intensity

T temperature

u, v velocities

Y mass concentration of the vapour and air in
the mixture

Greek symbols

absorption coefficient

evaporation parameter

coefficient of the heat conductivity of air—
vapor mixture

4 molar mass

> ™ R

p  density

Subscripts

a air

av averaged

i ice

s surface of the particle
W water
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Here p, py, pa» D> Pvs Pas U, Vy, vy are densities, press-
ures and velocities of mixture, vapor and air; Cp,, 4, D

are specific heat and mixture coefficients of the heat
conductivity and diffusion; u, u,, u, are molar masses
of the mixture, vapour and air; Y,, Y, are mass con-
centrations of the vapour and air in the mixture, Y, is
vapor concentration at infinity; 75, T, are tempera-
tures on the surface of the particle and the gas at infin-
ity; H is the specific heat of water evaporation H,, or
ice sublimation Hj; p; is the known value of saturation
pressure at a temperature of 77 (py =1 bar at T} =
373 K). The Clausius—Clapeyron equation (5) relates
the saturated vapor pressure pg, with the surface tem-
perature Ts. We neglected the viscosity members in the
equation of energy conservation (2), barodiffusion and
thermal diffusion in Eq. (3). Since the vapor and air
density is by a factor of 10° less than water and ice
density, the characteristic times of heat and mass trans-
fer in the gas are by several orders of magnitude less.
Heat and mass transfer outside the particle is quasi-
stationary. The gas flow is one-dimensional for a disk
everywhere, excluding the close vicinity of edges and
axisymmetrical for a cylinder far from its ends. The
stationary equations of mass conservation (1) have the
following integrals for the cases of plane, cylindrical
and spherical symmetry:

o) =d"; 1 py(u+va) =0;
(©6)

rl?lpu — alﬂ H

Here m =0, 1, 2 for the plate, cylinder and sphere, j
is density of the vapor flow from the particle surface.
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The stationary equation (2) has the following first
integral:

w? aT )
r”’[pu(CpT+ 7) — /IE] =d"jr @)

At a slow heating rate and a surface temperature T
less than the boiling temperature Ty, it is possible to
neglect the vapor kinetic energy u?/2. At T, > Ty, it
is possible to neglect the ambient medium heat con-
duction (member —A137/dr). The value jr is density
of energy flow from the particle surface. We shall
take the specific heat capacity of mixture C,, the
thermal conductivity 4 and the product pD of the
mixture density p by the vapor diffusivity D as con-
stant and equal to some average (over the tempera-
ture) values. Replacing the velocity using Eq. (6)
from Egs. (3) and (7), and taking into account par-
ticle surface boundary conditions, we get expressions
for gas temperature and mass concentrations of the
vapor outside the plate (disk), cylinder and sphere:

jT iC.(r—a)/ jT
T. — _ JCp(r—a)/ % — =0
( g 'Cp> ¢ TG
. JCoafh
Jr r\ 7o JT
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In case of a sphere (m = 2) using conditions at infin-

ity, we find the following expressions for the flows of
mass and heat from the droplet surface:

J= a In <1 — YVS>’
Ts exp(jCpa/) — Teo
exp(jCpa/i) — 1

)

Jr=JCp

For Y, < 1, it is possible to take the pressure of mix-
ture approximately equal to the pressure at infinity.
Expressions (9) give boundary conditions j(T5), jr(Ts)
for a spherical droplet.

In the cases of a cylinder or a plate, the solutions (8)
unlimitedly decrease at great distances, which disagree
with the physical sense. Let us build auxiliary solutions
Y,(r), T(r) in the field of great r>L and conjugate
these external solutions with the internal one (8). At

r> L, the flow may be considered as spherically sym-
metrical. Let us introduce in Egs. (6) and (7) the flow
density of mass j; and heat jr; at a sphere of the
radius r, = AL. Here A is a constant that may be
found by comparing the results with a rigorous nu-
merical solution or with experimental data. Conserva-
tion of mass and heat flows through the surfaces of a
disk or a cylinder, on the one hand, and a sphere of
the radius rz, on the other, gives simple relationships
for

. o J Jr

disk (m = 0): R TR

isk (m=0): j, 2A27]TL VPR

) (10)
Jjra

242L°

. . ja .

d cylind =1): XL~
and cylinder (m = 1) j, S 2L
Instead of the surface conditions for functions Y(r)
and T(r), we use the conditions at great r—oo. Then
the solutions similar to Eq. (8) will be written as:

)= (T 8 )T

JLGp JLGp (11)
Y(r) =1 — (1 — Yy ) e /4100
At coordinate r = ry, we will equate solutions (8) and

(11). Then, we will get implicit dependence of the flows
of mass j and heat j; at the particle surfaces on the
surface temperature T:

. pD - Yy
= —1 .

/ Fef n<1 — Yy ’

in=jc T exp(jCpre/2) — Too
r P exp(iCprer/2) — 1

L(A+1)24+a/A’L) —a, m=0
Tef = a[ln(AL/a) +(1+ a/L)/ZA], m=1. (12)
a, m=2

Expressions (12) give boundary conditions of heat and
mass transfer on the surface of the vaporized particles
having the form of disk (m =0), cylinder (m =1),
sphere (m = 2) for diffusive and diffusive—convective
regimes of evaporation. The three classes of particles
are distinguished by the effective radius re. At high
intensities of heat release and surface temperature
exceeding the water boiling temperature (7 > Tp),
vapour displaces air. Subsonic and sonic regimes of
evaporation are realized, in which values j, j; are inde-
pendent of the geometric form and size and only
depend on the surface temperature 7.
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3. Heat sources inside particles

Inside a particle (disk, cylinder, sphere), the process
of heating is described by the heat conduction equation
for ice and the boundary condition for mass sublima-
tion from the surface:

aT
2L = '”/1—
Piteigy r’”8r< )
(13)
d
T(r,t =0)= Fhi— =jH;+jr
ar r=0; h; a
da j
a = —;l, a|[:0= ap (14)

[T33L)

Subscript “i” denotes ice; ¢ = aly is the heat release
intensity averaged over volume, o is the average
absorption coefficient, [y is the characteristic intensity
of radiation. By definition:

Wabs ‘[OCL W[dV
q= = =ah,

V 14 (15)
_ Wabs _ ﬂ/
Qabs = GI() = G

Here Wy, is the energy absorbed per unit of time
in the volume of a particle V (V=2anl?* nd’L;
4na’/3 for the disk, cylinder and sphere, respect-
ively), o w = 4mnk; /4 is the coefficient of radiation
absorption with a wavelength / in the medium with
the absorption index equal to xj y (it ice, w: water);
Q.ps 1s a factor of radiation absorption on a single par-
ticle; G =nL*(m =0); 2al(m=1); na’(m=2) is an
area of particle section by a plane perpendicular to the
axis of the laser beam. In the case of the oblique inci-
dence of beam at angle 0; > a/L (with the local verti-
cal on the plane of the disk or with the axis of the
cylinder), the flow of radiation energy W and the sec-
tion area of particle G are:

W = IynL? cos 0y, m = 0; Iy2aL cos 0, m = 1;
Iond®, m=2
G =nL’cosf; 2aLcosb; na*

Let us take a look at radiation wavelength 4 = 10.6
um in the following optical constants of ice and water:
n; = 1.195; ki = 0.0690; o = 7.14 x 10* m~!;
ny = 1.185; iy = 0.0602; 0y = 8.18 x 104 m™! [15].

For a flat disk of thickness /4 =2a and radius
L > a, using the expressions for the coefficient of
reflection R and the coefficient of transmission 7 for

an unlimited plate of thickness 4 [16], we get:
Waps = (1-R- T)WQ

Wabs cos 01

*=pp, =U-R=D=, (16)
W
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2n
p= Tnzh cos 0; ny sin 0y = n, sin 6,;
s

1y sin 0, = n3 sin 03

Here 1, 3 denote the surrounding medium (air), 2
denotes the matter of the plate (ice).

Expressions for the extinction factor Qey, scattering
factor Qs., and absorption factor Qs for an unlimited
cylinder or sphere are presented in [3] together with
programs for calculation of these factors (in the case
of the normal incidence of radiation on the cylinder
axis). Calculations for an obliquely oriented cylinder
were carried out in [17]. Within the limits of small par-
ticles, such as x, |[N|x < 1 (where x = ka is a wave or
diffraction parameter; k = 2r/4 is a wave number, N =
(ny + icp)/(ny + ixcy) is a complex index for refraction
of the particle material with respect to the surrounding
medium, i.e. air), we have

{ I(Nz_nN +3},
N2 +1

2 abs i 21
a:&:ai"_Jr n
na 2 (14n —K)+4n

N2—1}.

cylinder:

Qabs =

sphere:  Qaps = 4Im{ N2

(18)
o= 305 - 9n;
A [ G
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0.0 4.0 8.0 120X

Fig. 1. Average volumetric absorption coefficient o (curves 1,
2, 3) and absorption factor Qs (4, 5, 6) as a function of dif-
fraction parameter x = ka. 1 and 4 correspond to disk (infi-
nite plate); 2, 5 to infinite cylinder; 3, 6 to sphere. Normal
incident radiation, angle 6; = 0.

We took into account that for air N=n; =1, x; =0.
An absorption factor of an ice particle averaged over
volume within the limits of small radii tends to 1.18a;
1.003¢; and 0.915¢; for the case of plate, cylinder and
sphere, respectively. The o« and Qg rigorous relations
to the particle size a (to the diffraction parameter x =
ka) are presented in Fig. 1, their relations to angle 6,
in Fig. 2 In the case of oblique cylinder, the cos 0; law
is a good approximation for the absorption coefficient
o dependent on 0.

0 30 60

0
90 6,

Fig. 2. Average volumetric absorption coefficients « (curves 1,
2, 3, 4) and absorption factors Qs (5, 6, 7, 8) versus incident
angle 0,. 1 and 5 correspond to infinite cylinder, radius a = 1
um; 2, 6: infinite cylinder, ¢ = 2 um; 3, 7: infinite plate, thick-
ness 1 =2a =2 um; 4, 8: infinite plate, 2a =4 pm. Curve 9
(dashed line) is cos 0;.

4. Heating and sublimation of particles

Integrating (13) with respect to the coordinate, for
temperature 7,, averaged over the particle volume, we
get an equation with the initial condition:

AT,y
dr

Tav _ m—+ 1 J Trmdr; (19)

1
amt 0

m+1 . .
PiCpi =q- T(/Hi +Jr);

m=0,1,2; Tolo= T

Density, specific heat capacity and thermal conduc-
tivity of ice are equal to p, = 900 kg/m?, Cpi =2106J/
kg, 4 =2.20 W/(m K) at a temperature of 273 K.
Temperature-dependent on specific heat at constant
pressure Cp, i, w, v for ice, water and vapor (at satu-
ration line), latent evaporation heat H; , and saturated
vapor pressure ps v over the ice and water surface,
as well as diffusivity of vapor D in air and thermal
conductivity of air 4 are presented in Table 1
[4,5,18-20].

As a result of heating, the particle temperature
quickly reaches a certain maximum value Ty, then
slowly falls as the heat losses per unit volume increase
while the particle size reduces. If the heat release inten-
sity is insufficient, the temperature will never reach the
melting one: Tyax < Tmerr = 273 K. A slow particle
sublimation occurs. Let us define an upper threshold
of sublimation regime or a lower threshold of melting
regime with respect to the heat release intensity gsu =
olosuy from Eq. (19), when the temperature reaches its
maximum d7,,/df = 0 provided this maximum is equal
to the melting temperature:

m+1 . .
qsub = T(]Hl +]T)|T:Tmcl|
[ps(Tmelt) _ps(Too)] (20)

~m+wmmmm
Aaref HUPoo

+me—nﬁ

Relations of sublimation (melting) thresholds gy, to
the ambient air temperature 7T, are presented in
Table 2 for plate (m = 0), cylinder (m = 1) and sphere
(m =2) in the case of the equal initial size ay = ey =
agpn =1 pm (see columns 2, 3, 4; radius of disk
Ly = 10ag, length of cylinder Ly = 20ac,1) and in the
case of the equal initial mass myy = 2ap1nLglpi =
nagy]LCylpi = 4nasphpi/3 =5.654x10"10 ¢ (ap =1 pm,
m=0) for cylinder and sphere (acy =2.154 um,
m=1; apn, = 5.313 pm, m = 2; columns 5 and 6, cor-
respondingly). Pressure po is equal to 1 bar (height
equals 0 km). The sublimation threshold weakly
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Table 1

A.N. Kucherov | Int. J. Heat Mass Transfer 43 (2000) 2793-2806

Thermal physical and thermodynamic properties of ice, water, vapor and air

T (K) Gy (kJ/kgK) H (MJ/kg) ps (N/m?) D (107° m%/s) Ja (W/m K)
ice water i w i w air
203 1.60 4.40 2.84 2.68 0.261 0.524 1.30 0.0188
213 1.67 439 2.84 2.66 1.08 1.96 1.42 0.0196
223 1.75 438 2.839 2.63 3.93 6.35 1.55 0.0206
233 1.813 437 2.839 2.60 12.8 18.9 1.69 0.0213
243 1.870 4.36 2.839 2.58 38.0 50.9 1.88 0.0220
253 1.959 435 2.838 2.55 103 125 1.95 0.0228
263 2.031 427 2.837 2.52 260 286 2.08 0.0235
273 2.106 4218 2.835 2.50 611 611 2.22 0.0241
283 4.193 2.477 1227. 2.36 0.0248
293 4.182 2.454 2337. 2.50 0.0255
303 4.179 2.430 4241, 2.65 0.0262
313 4.179 2.406 7375. 2.80 0.0271
323 4.181 2.383 12335. 3.00 0.0277
333 4.185 2.358 19917. 3.24 0.0285
343 4.190 2.338 31170. 3.40 0.0292
353 4.197 2.308 47360. 3.60 0.0299
363 4.205 2.282 70110. 3.80 0.0307
vapor
373 2.034 4216 2.257 101325. 3.98 0.0314
393 2.100 4.245 2.202 1.99 x 103 4.38 0.0328
423 2.320 4310 2.114 4.76... 4.70 0.0328
473 2.883 4.497 1.941 15.55... 6.12 0.0347
523 3.918 4.870 1.715 37.98... 7.34 0.0385
573 6.140 5.770 1.404 85.92... 8.66 0.0420
623 15.95 10.08 0.894 165.4... 10.0 0.0447
647 6198. 3087. 0.0 221.2 x 10° 10.7 0.0487

depends on height. The lower line shows values of the
averaged absorption coefficient o/a; for conversion of
the sublimation heat release intensity gy, into the laser
beam intensity 1 sup = ¢sub/ 0

Let us define the evaporation parameter f§=
JHi/(jH; + jr) as the portion of the full heat losses
energy that is spent on evaporation and the evapor-
ation efficiency b = jH; (m+ 1)/ag as the portion of

Table 2

the total energy absorbed by a particle that is spent
on evaporation. Usually, the theory of water aerosol
clearing does not draw a distinction between these
values, since it is expected that droplet evaporation
occurs in the regime of constant temperature, which
is close to the maximum temperature.

At the sublimation (melting) threshold d7,,/dt =0,
these values coincide and are equal to

Values of heat release intensity gy, W/m? at the boundary ““sublimation—melting”

Temperature Radii ap = eyl = agpn = 1 (um) Mass mg = 5.654 x 1071 g = const
T (K) m=0 m=1 m=2 m=1 m=2

203 1.32 x 10" 1.13 x 10'2 5.96 x 10'2 2.43 x 10" 2.11 x 101
213 1.16 x 10! 9.92 x 10" 5.24 x 10'2 2.14 x 10" 1.86 x 10"
223 1.00 x 101 8.55 x 101 4.51 x 10'2 1.84 x 101 1.60 x 101
233 8.40 x 10'° 7.16 x 10" 3.78 x 10'? 1.54 x 10" 1.34 x 10"
243 6.71 x 10%0 5.72 x 101 3.02 x 1012 1.23 x 101 1.07 x 101
253 4.90 x 1010 4.17 x 101 2.20 x 102 8.99 x 1010 7.81 x 1010
263 2.77 x 10%0 2.36 x 10" 1.25 x 10'2 5.09 x 1010 4.42 x 10'0
/0 0.904 1.04 0.970 0.959 0.994
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a/ao,];v/ljne,,,AWm,Bw
1.00 ‘
0.75 — 1
0.50 -

I
025 -~ 4 .

| e = -

0.00

T T T

0.00 0.01

0.02 0.03 0.04%s

Fig. 3. (Initial interval). Time-dependent relative size of an ice
aerosol particle a/ay (curves 1), average temperature T,y /Tert
(curve 2), relative loss of mass Am/my (curve 3) in the subli-
mation regime and time-averaged evaporation parameter f,,
(curve 4), for a disk of thickness 2ap =2 pm and radius
Ly =10 um (solid curves); for a cylinder of radius
Gey) = 2.154 pm, and length L. =43.08 pm (bold solid
curves); for a sphere of radius agn = 5.313 pm (dashed lines).

p= 0
i +jr |-,
~ 1 ~b
= /«lpooA(Tmell - Too) = (21)
1, Hi (D) [ps(Tmer) — ps(Too) |
_ (m+1)jH;
=

In Figs. 3 and 4 (Fig. 3 is the initial interval, Fig. 4 is
the whole interval), we plotted as a function of time

a/aO ) ];v /Tr'uell ’ A ’”/mo’ Buv

1.00 3

0.00

T L !
0.00 0.25 0.50 0.75 1.00%s

Fig. 4. Entire time interval.

relative size a/ay (curves 1), averaged particle tempera-
ture T, (7)/273 K (curves 2), relative loss of mass
Am/my = [m(t) — mg]/my (curves 3) and average evap-
oration parameter f3,, = [j(;ﬁdz]/z (curves 4) for the
disk with the initial thickness of 2ay; =2 pm and
radius Ly = 10ay = 10 pm for ¢ = 8.25 x 10'° W/m?
(solid curves); for the cylinder of radius ac, =2.154
pm and length L. = 20ac; =43.08 um (bold solid
curves) and for the sphere of radius agn = 5.313 pum
(dashed lines) at ¢ = 1.34 x 10" W/m?®. Temperature
and pressure of air are equal to T, =233 K, p, =1
bar. The losses of mass and the average evaporation
parameter are by the moment of time of 1 s for ice
plate, cylinder and sphere Am/my =89, 95 and 97%,
P = 0.070; 0.058 and 0.068, respectively.

The part of full heat losses energy spent on evapor-
ation does not exceed f,,,, = 0.22, 0.20, 0.23. Evapor-
ation efficiency b 1is slightly different from the
evaporation parameter f (b is slightly less than f on
heating and is a little greater than f when the particle
is cooling down).

The maximum particle temperature is equal to
(Tav)max = 272.9; 264.2 and 2729 K for the plate
(disk), cylinder and sphere, respectively.

5. Melting of particles

Energy consumption on melting a particle is equal
t0 Emeit = piHmeit Vo, Where Hpye = 3.34 x 10° J/kg is
specific heat of ice melting and ¥y is initial particle
volume. We will consider the process of cylinder melt-
ing with some assumptions. Initial temperature is con-
stant and equals the temperature of surrounding air.
The temperature distribution is cylindrically symmetri-
cal and the front of melting begins moving from the
external surface inwards.

This situation is possible if at the initial moment the
surface is covered by a thin water layer, which absorbs
radiation better than ice, although the difference is
rather small: o, = 8.18 x 10* m™! > o, =7.14 x 104
m~'. Due to the heat losses from the surface, in this
case the melting time of a particle will not reduce if
the melting front moves from the center to the edge.
For the plate (disk), there is no difference if the melt-
ing process begins with the surface exposed to radi-
ation or with the opposite side. The latter is possible,
since the distributed heat source for a plate 1-2 um
thick has a maximum on the surface that is opposite
to the irradiated one [13].

The particle melting process is described by a one-
dimension equation of heat conduction for water with
the following boundary and initial conditions:
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aT 1 0 , 0T
prP = <rm/“w ) + qw;

WE ym 5 a (22)
a<r<{(t)ym=0,1,2
le:Lf([): Tmeh =273 K, T|,:0: Tmell;
70) = h=2a, m=0 (23)
T e m=1,2
, oT ) )
_/LWW ‘ = (]Hw +JT)|TS:T(1':a)E JW(T;) (24)
r=a
T 0T d¢
I | =il iy (25)
or L=ty 97 L=ty dr
. aT 0
Cor |, 26
ar r={ 4 m+1 ( )

Here &(¢) is a coordinate of the moving front of the
melted material (water); ¢ =¢q, qw = (tw/%)g =
1.146¢; is the average volumetric heat release intensity
both, in solid and liquid phases. Ice temperature is
close to the melting one, but during the melting pro-
cess it remains less than Ty, In the process of melting
on the boundary of the melted material (water) at
r ={(t), there is a sink of heat, which prevents the
further heating of ice, until it melts down to water.
Condition (26) is an integral of ice heating equation

1;’ Tﬂv w
500

400

300

200 7

o 2 4 & sghys

Fig. 5. Time-dependent cylinder surface temperature 7y and
average volumetric temperature of water T,y  (dashed lines)
at heat release intensities ¢ =7.20 x 10"® (curves 1);
2.16 x 10" (curves 2); 7.20 x 10" W/m?> (curve 3: taking into
account surface evaporation, curve 4: without taking it into
account, J(Ts) =0). Ambient air temperature is 7o, = 233
K, pressure po, = | bar, cylinder radius a = 2.154 pm, length
L =43.08 pm.

(13) for volume, under the condition d7/dt~0. For
the numerical solution of the problem, an implicit ab-
solutely steady finite-difference scheme was applied
using a run-procedure. For every time step Az, the
propagation step A{ and the propagation rate d{/dt =
A{/At of the melting front (water front inside ice) were
determined by means of an iterative algorithm. Tem-
perature-dependent specific heat capacity, latent evap-
oration heat, water heat conductivity coefficient, and
saturated vapour pressure over water, were taken from
the tables with a step of 5 K.

Fig. 5 shows time-dependent average water tempera-
ture Ty, w:fVV(‘E) TdV/(Vo— V') (dotted lines) and sur-
face temperature 7y for a cylinder of radius
Gcyy =2.154 pum at a heat release intensity ¢ =
7.20 x 10" (curve 1), 2.16 x 10" (curve 2), 7.20 x 10"
W/m® (curve 3: with, and curve 4: without regard to
the evaporation from the surface, Jy,(75) = 0). Here,
Vo=V({(=a), V() is the initial and the current
volume of ice in the particle, which equals
V(¢) = 2¢nL?; nt*L; 4ng?)3 for the disk, cylinder and
sphere, accordingly; Vo —V is the volume of the
melted material (water). The temperature of air is
equal to T, =233 K, the pressure equals p,, ~1 bar.
The account of evaporation has a noticeable influence
on temperature distribution, but a weak influence on
the total time of particle melting. The difference is less
than 20%.

The melting time is fpee = 413, 49.2, 7.879 and 1.493
ps for ¢ =g =7.20 x 10", 7.20 x 10", 7.20 x 10",
7.20 x 10" W/m?, respectively.

Values of the evaporation parameter averaged over
the melting time are f,, = 0.212, 0.228, 0.410, 0.739.

Values of the average temperature of the particle
after melting are T, =279, 294.1, 350, 463.8 K at
g=7.20x 10", 7.20 x 10", 7.20 x 10, 7.20 x 10"
W/m®. This temperature should be taken as initial
when studying the evaporation process of the formed
droplet. The velocity of the melting material front is
d{/dt = 0.0215, 0.133, 0.547, and 2.217 m/s.

Losses of mass are insignificant and do not exceed
1% for the case of the most intensive heat release ¢ =
7.20 x 10" W/m? of all the variants considered above.

As follows from equations of heating, melting and
evaporation of particle (13), (19), (22)—(26), the least
amount of energy is required for the particle heating,
then for melting and finally, for evaporation, because
of the fact that C,AT < Hpex < Hi, H,. Respectively,
the heating time is essentially shorter than the melting
one, and the latter is substantially less than the evapor-
ation time of the formed droplet.

We shall derive approximate expressions for the
melting time 7 using the results of the numerical cal-
culation, according to which we have
dTyy w/dtxconst = K, or Tyy, w= Tmer + tK. Let us inte-
grate Eq. (22) over the volume of water JI/V(‘l) dv.
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Using two auxiliary correlations

AT . AV
dt T

%[Tav, W(VO - V)] = (VO - V)

dV
= K(VO - V) - (Tmelt + K[)E

Vv

d [
&[Tav,w(VO - V)] = a[(J TdV)

ar dav
= = dV — Tpe—
JV at U dy

we derive for the left part of Eq. (22), the following ex-
pression

Yoar dv

Cow — dV =p,CouK| Vo=V —t—|.
pprV ot Pwlp [0 dl]

Here we took into account the fact that on the melting
material front, the temperature is equal to the melting
temperature. In the right part of Eq. (22), the inte-
gration for water volume using the boundary con-
ditions on the melting front on the water side (25) and
the ice side (26) gives:

Yo ol T
j quV—I—J —i<r’"ﬂvwa—) dv
Vv v M or ar

o

oT
= quVo = V) + S5

¢

dr
=qv(Vo—=V)+ piHmeltW + iV — SoJw;
Lo = h=2a, m=0
"a m=1,2"

2 2
where Sy = nLPl, 21 Leyideyt, 47mSph is the area of the

external surface of a particle; S({) = nLgl, 2nLey, 4n{2
is the area of the melting material front surface for a
disk, a cylinder and a sphere, respectively. We take
into account the relationship S({)d{/dt=dV/dz.
Further, we neglect the heat and mass losses from the
particle surfaces: Jy, = 0. Approximate equations of
particle melting and its solution have the form

dv
dr
Kl = Pw prK

(piHme + K11) = V(gw — qi — K1) — Vo(gw — K1);

,:@ _1+|:LK1<1_£>
K qi Vo

v (K} /{aw—ai—Ki }
Vo

@:1 4i

Vo 9w — ¢ — Ki

tK, {aw—ai}/{Ki}=1
X (1 + ) —1
piHmell

Hence it follows that, the melting time fme; (at V({ =
0) = 0) equals

@7

-H. w— K (Ki}/{aw—ai—Ki }
Imelt = le_meh { -1+ [7qt 1 :| (28)
qi

Using the results of the numerical solution of the melt-
ing problem, we will take K = 1.32 x 10%, 4.29 x 10°,
9.77 x 10%, 1.28 x 10® K/s at ¢ = 7.20 x 10", 7.20 x
10'2, 7.20 x 10'3, 7.20 x 10" W/m?®. In Fig. 6, the fol-
lowing results for an ice cylinder are presented: exact
dependence fpe(gi) (curve 1), an approximate depen-
dence calculated using formula (28) (curve 2), and sim-

11 12 13 14 15
log[q ,W/m’]

Fig. 6. Melting time 7., relations to heat release intensity ¢;:
1 is an exact solution; 2 is an approximate formula (28); 3 is
the simplest approximation tme(qi) = 0; Hmelt/qi-
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plest approximation of the relationship between the ice
particle melting time and the intensity of heat release
Giitmen(qi) = piHmen/qi (curve 3), which directly
expresses the energy conservation law if we multiply
the numerator and the denominator by the particle
volume. The inaccuracy of formula (28) is less than
3% at ¢<7.2x 102 W/m® and does not exceed
19.8% at ¢;<7.20 x 10" W/m®.

The similar comparison of approximate expression
(28) with the exact melting time of a plate (disk) shows
that inaccuracy does not exceed 4.0% at ¢;<3.20 x
10'* W/m>. The numerical constants K for the plate
having the same mass as the cylinder, i.e. at ay =1
pm, Ly =10 pm are: K=3.292 x 103, 2.268 x 105,
6.95 x 10°, 4778 x 107 K/s at ¢; = 6.4 x 10", 6.4 x
102, 6.4 x 103, 3.2 x 10" W/m?.

Both the considered approximations, the simplest
one and the one derived from formula (28), depend on
the form of the particle through the intensity of heat
release ¢ = aly, i.e. through the average volumetric
coefficient of radiation absorption «. This quantity is
important in the nonlinear optics of aerosols. The
form of the particles also affects the temperature
increase rate K. And, finally, the value of heat losses
from the particle surface due to evaporation Jy,, which
for particles of equal mass increases when passing
from the plate to the cylinder, and from the cylinder
to the sphere, can be a reason of inconstancy of value
K and difference between the approximate value 7y
and the exact one.

The influence of variation in temperature 7., and
pressure ps, of the surrounding air on the melting pro-
cess is small.

Table 3

6. Evaporation of the formed droplet

The process of droplet evaporation at the approxi-
mation of uniform heat release and uniform tempera-
ture field inside the droplet is described by Egs. (19)
and (14), in which physical parameters of water are
used. The radius of the formed droplet (agn = 5.130
um) is smaller than that of the ice sphere of the equal
mass, which is 5.313 um due to the lower ice density in
comparison with that of water.

The calculations of all stages of particle destruction
(heating, melting, sublimation and evaporation) were
carried out for a cylinder of initial radius ac,; = 2.154
pum at an air temperature 7, = 203-233 K and a
pressure po, = 1-0.55 bar (height 0-20 km), within the
range of heat release intensity from the upper
threshold of sublimation (lower threshold of melting)
gi = 1.84 x 10" W/m? up to ¢; = 7.2 x 10" W/m>.

In Table 3, the following values are presented as a
function of radiation intensity /y: heating time fuey Up
to 273 K, melting time fye (including #e,) and evap-
oration time ty,, (including fpe) up to the moment
when the particle loses 95% of mass; the values of
evaporation parameter f3,, and evaporation efficiency
by = [f(f b dr]/t averaged over time; maximum tempera-
ture Ty, max and volumetric averaged temperature 7Tgy
at the end of the evaporation process. The physical
parameters of a spherical supercooled water droplet of
equal mass are presented in the lower lines of some
cells of the table. Air temperature is T, = 233 K,
pressure is po, = 1 bar (height equals 0 km).

Temperatures averaged over volume for the cylinder
and the sphere are identical, both, when the maximum

Heating time fyeq, melting time fye, €vaporation time #,,,, evaporation parameter f,, and evaporation efficiency b,, of ice cylinder,
maximum temperature 7,y max and temperature at the end of the evaporation process T,y up to 95% loss of mass. Initial cylinder
radius is acy = 2.154 um, cylinder length is L.y = 43.08 um, air temperature is T, = 233 K, air pressure is po, = 1 bar. The lower
line in each cell gives values for a supercooled water droplet of equivalent mass (radius is @ = 5.130 pm)

10 (MW/mz) theat (us) tmelt (us) tvap (ms) bav Bav Tav, max (K) Tav (K)
5 265. 1030. 95.43 0.122 0.194 298.2 252.3
94.80 0.122 0.195 298.6 2524
10 115. 601.5 27.64 0.207 0.331 314.7 266.4
27.36 0.209 0.332 314.8 266.4
50 21.0 117.9 2.72 0.406 0.655 347.4 307.5
2.66 0.414 0.664 347.5 307.4
100 10.4 62.56 1.23 0.442 0.709 358.8 323.1
1.20 0.453 0.732 358.8 323.0
500 2.10 15.97 0.229 0.523 0.824 378.1 354.1
0.223 0.537 0.835 378.1 354.1
1000 1.03 9.278 0.0987 0.837 0.952 384.4 374.9
0.0956 0.866 0.966 384.4 374.9
5000 0.206 2.811 0.0182 0.893 0.966 420.6 392.3
0.0174 0.930 0.979 419.7 392.5
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is achieved and when the mass is reduced by 95%. The
total evaporation time, time-averaged evaporation par-
ameter f,, and evaporation efficiency b,, are different
by a few percent only.

Due to the small energy expenditure on particles
heating and melting and the slight difference between
thermal physical and optical characteristics of ice and
water, in the first place, coefficients of radiation
absorption and latent heat of evaporation, the differ-
ence in the characteristics of the evaporation process
of an ice cylinder (as well as a plates or a disk) and a
water droplet is small. Time of evaporation is different
by not more than 4.4% within the range of radiation
intensities Iy = 5 x 105-5 x 10° W/m?. The essential
distinction is between the evaporation characteristics
of the droplet and the cylinder, the axis of which is
situated at a small angle ¢ = n/2 — 0; with the parallel
radiation beam. In the limiting case, the base of the
cylinder is turned to the beam and receives minimum
part of the radiation flow, which is equal to
(dey1)?/2aeyi Loyt = /40 = 0.0785, compared with the
case when the beam incidence is perpendicular to the
cylinder axis. Figs. 7 and 8 presents the results for the
case @ = 5.73° (Ip = 108 W/m?, Ta =233 K; poo = 1
bar; a1 = 2.154 pm, radius of the equivalent sphere is
agpn = 5.130 pum). In Fig. 7, the time dependence is
shown for the temperature, the solid curve corresponds
to the cylinder, the dotted line corresponds to the
supercooled water droplet of equivalent mass. In Fig. 8,
time dependence is presented for relative mass losses
Am/myg, curve 1, time-averaged evaporation parameter
P (curve 2) and evaporation efficiency b,, (curve 3).
Dotted lines correspond to the respective relations for

T K

av?

400 —
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250

T ] 7 ' i 1,8
0.0000 0.0006 0.0012 0.0018

Fig. 7. Temperature of evaporating cylinder (solid curve,
ey = 2.154 pum) and supercooled droplet of equivalent mass
(dashed line, agpn = 5.130 pm). Beam intensity /y = 108 W/m?,
air temperature T, = 233 K; pressure p,, = 1 bar; angle of
beam deviation from the cylinder axis ¢ = 5.73°.

the supercooled water spherical droplet. Difference of
evaporation time due to the increase in heating and
melting time for the ice cylinder is 44.7%.

Reduction of air temperature, for instance down to
203 K, firstly, enlarges the temperature difference
between the particle and the ambient air and increases
the heat flow value j7; secondly, enlarges concentration
difference and vapor flow density j. For the cylinder,
the time of evaporation is #,,, = 80.61, 1.282, 0.0992
ms at Iy = 107; 10%; 10° W/m? Average evaporation
parameter f,, and evaporation efficiency b, were
equal to b,y =0.071, 0.424, 0.833 and f,, =0.113,
0.685, 0.942 by the moment of mass reduction by
95%. Maximum values of temperature equal to
Tav, max = 311.7, 358.7, 384.4 K are reached at the time
moments = 1.41; 0.142; 0.0144 ms. Difference
between evaporation features of a supercooled spheri-
cal droplet and an ice cylinder is insignificant. Differ-
ence between evaporation features of the cylinder at
the air temperature T,, = 203 and 233 K is 192; 4.2;
0.5% for the evaporation time f#yqp; 193; 3.4; 1.05% for
the evaporation parameter f3,, and 65.7; 4.1; 0.48% for
the evaporation efficiency b,, at the radiation intensity
I, = 107; 10%; 10° W/m2, respectively. The evaporation
time in magnitude increases by 2.92 times, and the
time-averaged evaporation efficiency decreases by 2.93
times. Therefore, at lower beam intensities the differ-
ence in evaporation features due to air cooling is essen-
tial, and it is necessary to take into account the
influence of air temperature reduction in the problems
of aerosol clearing.

Reduction of surrounding air pressure as the height
grows poo = 0.5401, 0.265, 0.121, 0.055 bar (height is
5, 10, 15, 20 km) results in reduction of the boiling

A Wm()’ Bllv ’buv

1.0
. PR
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06 -/ £__
“I//I 2 T f <
0.4 —‘// 2
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[
02—,/
4
0.0

‘ ? Ay
0.0000 0.0006 0.0012 0.0018

Fig. 8. Relative mass loss Am/myg (curves 1), time-averaged
evaporation parameter f,, (curves 2) and evaporation ef-
ficiency b,, (curves 3). Solid lines: cylinder, dashed lines:
supercooled spherical droplet.



2804 A.N. Kucherov | Int. J. Heat Mass Transfer 43 (2000) 2793-2806

] logI ,W/m?]
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Fig. 9. Time-averaged evaporation efficiency b,, (at the
moment of the 95% loss of mass) versus laser beam intensity
Iy, W/m? for an ice cylinder and a supercooled spherical
water droplet (dashed line) at a height of 0 km (curves 1,
Poo = 1 bar) and 20 km (curves 2, ps = 0.055 bar). Ambient
air temperature 7o, = 233 K.

temperature down to the values 7, = 356.3, 339.3,
322.8, 307.3 K and in reduction of the boundary tem-
perature, which separates the diffusive and the gas
dynamic regimes of evaporation. This temperature is
close to the boiling temperature. For the same values
of droplet surface temperature (radius equals 5 um)
Ty =307, 311, 371, 381 K, the values of density of
vapor flow j(T;) and density of heat loss flow from the
surface J(T) = jH,, + jr are j = 0.205, 0.261, 13.0, 39.1
kg/m?; J = 0.937, 1.113, 40.0, 86.7 MW/m? at a height
of 0 km and j = 0.70, 1.50, 70.7, 99.1 kg/mz; J =2.50,
4.00, 157.2, 217.5 MW/m2 at a height of 20 km. Heat
and mass losses from the surface increase due to the

Bay
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Fig. 10. Same as in Fig. 9 but for averaged evaporation par-
ameter f,,.

transition from the diffusive regimes of evaporation to
the gas dynamic ones at the lower values of tempera-
ture. The features of the evaporation process notice-
ably change in comparison with the case of pressure
Poo = 1 bar in the wide range of intensity (see Table 4).

In Fig. 9, the values of evaporation efficiency b,y
depending on the laser beam intensity are shown at a
height 0 km (curve 1) and 20 km (curve 2). Ambient
air temperature is 7o = 233 K. In Fig. 10, the evapor-
ation parameter is plotted versus the intensity j at a
height of 0 km (curve 1) and 20 km (curve 2) for the
ice cylinder. Air temperature is the same T, = 233 K.
Dashed curves correspond to the evaporation of a
supercooled spherical water droplet. The difference
with respect to the characteristics of sphere evapor-
ation is small.

Difference in evaporation features of the cylinder at
heights of 0 and 20 km, namely, in values of evapor-
ation parameter f3,, and evaporation efficiency b,,, and
also evaporation time f,,, iS maximum at /o = 108 W/
m? and is small at I < 107 or Iy > 10° W/mz. The
divergence is due to the reduction of the boiling tem-
perature at great heights, as shown in Fig. 11 At [y =
107 W/m?, the particle temperature falls to the water
freezing temperature by the end of the evaporation
process. The increased rate of the averaged volumetric
temperature T,, falls at intensities Iy > 7 x 107 W/m2
(at a height of 20 km) and I, > 8 x 105 W/m? (at a
height of 0 km) due to the excess of boiling tempera-
ture 7, =307.3 and 373 K. Small reduction of the
evaporation efficiency in the field of high values of
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Fig. 11. Averaged temperature 7,y K (at the moment of 95%
loss of mass) vs. laser beam intensity Iy, W/m?> for an ice
cylinder and a supercooled spherical water droplet (dashed
line) at height of 0 km (curves 1) and 20 km (curves 2).
Dashed lines show the boiling temperature levels 7, = 373 K
(0 km); 307.3 K (20 km). Ambient air temperature 7T, = 233
K.



A.N. Kucherov [ Int. J. Heat Mass Transfer 43 (2000) 2793-2806

radiation intensity Jj is due to the overheat of water
(including the remaining 5% mass of the droplet) and
the vapor that escapes the surface of the particle, i.e.,
after all, due to the overheat of the surrounding space.
Maximum values of the evaporation efficiency corre-
spond to the radiation intensity values equal to
Iy~ 10® W/m? and 3 x 10° W/m? at heights of 20 and
0 km, for which the average volumetric temperature of
the droplet slightly exceeds the boiling temperature.
The energy loss necessary for evaporation of par-
ticles decreases as the intensity grows (refer to the fifth
column in Table 4). However, at the stage of heating
up to the maximum temperature, the temperature
gradient in the droplet is great and the conditions of
explosive destruction can be achieved. For the droplet
radius of a=1-5.13 pm, the explosive intensity
threshold is [21] Tapi = PeexpiiTeric/owa* 2 4.62 x
10°-1.76 x 108 W/m?, where Peepy = 1.13-1.23 is the
calculated Peclet number of explosion, 4 (583 K) =
0.522 W/m K is the characteristic value of water heat
conduction, T.; = 647.3 K is the critical water tem-
perature. Time of achieving the explosion conditions
equals et = Peitllexpt — wol/lexpt & 3.33 x 1075~
1.33 x 107 s, where p,;, is the characteristic value of
water density (here p.; = 317.76 kg/m> is water den-
sity in the critical condition), e, hwo are water
enthalpies at the moment of explosion and at the in-
itial moment, respectively. Usually, the initial water
enthalpy Ay can be neglected. The explosive enthalpy
hexpi 1s close to the value hg along the line of absolute
instability of water (spinodal). For the purpose of
evaluation, we take that hep~hsx1.6 klJ/kg at the

Table 4
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temperature of explosion Ty = 583-603 K [22]. As to
the order of magnitude, the time of reaching the explo-
sive conditions is equal to the time of reaching the
maximum temperature inside the droplet. After having
exploded, the droplet disintegrates into several (3—4)
smaller particles. The evaporation time for the latter
ones will exceed the evaporation time of the initial dro-
plet, since both the evaporation parameter and the
evaporation efficiency decrease as the droplet size
reduces. The total energy expenditure on evaporation
can turn out to be greater than in the regular evapor-
ation regime. A model for explosion of the droplet
aerosol was considered for example in [23].

7. Conclusion

The paper states the basic stages for creation of an
aerosol clearing theory including aerosols with ice par-
ticles. Conditions of heat and mass transfer from the
surfaces for three classes of aerosol ice particles, which
are disks (plates), cylinders and spheres, are different
only in effective radii.

Thresholds of intensity for the sublimation regime
(destruction without melting) are defined on the basis
of averaged equations of energy and mass conservation
inside particles, considering the boundary conditions of
heat and mass transfer on the particle surface.

It is found that for the particles of micron radius it
is possible to neglect the nonuniformity of temperature
distribution inside the particle at the stage of heating
up to the melting temperature. Particle melting is

Maximum particle temperature 7Ty, max; time of reaching this temperature #yq; evaporation time #,qp; density of laser beam radi-
ation energy at the moment of particle evaporation E = Iyt,,p; evaporation efficiency b,, and evaporation parameter f,, for cylin-
der; average temperature 7., at the end of evaporation process up to 95% loss of mass. Initial cylinder radius is acy = 2.154 pm,
length is L.y, = 43.08 um, air temperature is T, = 233 K, pressure is po, = 0.055 bar (height is 20 km). The lower lines give values
for a supercooled water droplet of equivalent mass (radius is agn = 5.130 pm)

Iy (10 MW/m?) Ty, max (K) fmax (1) fyap (ms) E (JJem?) bay Bay T (K)
1 301.6 1369. 26.47 26.47 0.2154 0.3462 266.2
302.3 640. 26.12 26.12 0.2196 0.3489 266.3
3 310.9 387.4 4.887 14.66 0.4419 0.6228 291.2
310.9 330.0 4.830 14.49 0.4476 0.6894 291.1
10 318.0 98.6 0.951 9.51 0.9338 0.9574 312.4
318.1 66.0 0.920 9.20 0.9631 0.9779 312.4
30 334.8 42.89 0.312 9.36 0.9360 0.9667 319.2
334.8 33.0 0.303 9.09 0.9703 0.9873 319.2
100 365.2 16.1 0.0921 9.21 0.9253 0.9761 341.2
365.4 12.6 0.0893 8.93 0.9529 0.9812 341.2
300 399.8 6.482 0.0301 9.03 0.9127 0.9845 370.8
400.2 5.130 0.0292 8.49 0.9360 0.9854 370.9
1000 457.1 1.682 0.00865 8.65 0.8864 0.9916 412.0
449.4 2.000 0.00850 8.50 0.9167 0.9918 411.8
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characterized by low evaporation efficiency and com-
paratively small losses of the particle mass (for the
maximum intensity of the considered intensity range,
they are equal to several percent). At high values of
intensity, the excess of the average temperature over
the surface temperature is possible due to the over-
heated internal volume of the fluid phase.

Evaporation characteristics of a supercooled water
droplet and an ice cylinder of equal mass are essen-
tially different for the cylinders, the axes of which are
at a small angle with the parallel flow of radiation.

For comparatively small radiation intensity, the re-
duction of ambient air temperature results in a signifi-
cant reduction of the evaporation efficiency and an
increase of evaporation time by several times. Pressure
reduction of the surrounding air brings about an essen-
tial increase in the evaporation parameter and evapor-
ation efficiency in the wide range of radiation intensity
values due to the realization of gas dynamic regimes of
evaporation at lower temperatures.

The difference in the evaporation process character-
istics is caused firstly, by the difference in the geometric
form of ice particles. Maximum differences occur
between the plate (disk) and the sphere of equal mass,
smaller differences exist between the cylinder (needle)
and the plate or sphere.
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